USN EE55

Fifth Semester B.E. Degree Examination, May/June 2010 Digital Signal Processing

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions.

2. Use of Butterworth and Chebyshev tables are not permitted.

- 1 a. Determine the following:
 - i) N pt DFT of x $[n] = W_N^{-mn}$

(05 Marks)

ii) 4 pt DFT of x [n] = $\cos\left(\frac{n\pi}{4}\right)$

(05 Marks)

iii) DFT of x $[n] = \delta [n]$.

(02 Marks)

- b. Determine the 8 point DFT of the sequence x [n] = [1, 1, 1, 1] and plot the magnitude and phase angle spectra. (08 Marks)
- 2 a. Consider the finite length sequence $x[n] = \delta[n] + 2\delta[n-5]$.
 - i) Find the 10 point DFT X (K)
 - ii) Find the sequence y [n] that has a DFT given by Y (K) = $e^{j\frac{4\pi}{10}k}$ X (K). (08 Marks)
 - b. Let $x [n] = 2 \delta [n] + \delta [n-1] + \delta [n-3]$. If X (K) is the 5 point DFT of x [n] and if Y (K) = X^2 (K), find IDFT of Y (K).
 - c. Prove the time shifting property of DFT.

(04 Marks)

- 3 a. Find the 4 point DFTs of the following sequences, using a single 4 point DFT $x_1[n] = [1, 2, 0, 1]$ and $x_2[n] = [2, 2, 1, 1]$. (10 Marks)
 - b. The sequence x [n] = [1, 2, 3, 3, 2, 1, -1, -2, -3, 5, 6, -1, 2, 0, 2, 1] is filtered through a filter whose impulse response is h [n] = [3, 2, 1, 1]. Compute the output of the filter y [n] using overlap and save method. Use 9 point circular convolution. (10 Marks)
- 4 a. If $x_1[n] = [1, 2, 0, 1]$ and $x_2[n] = [1, 3, 3, 1]$, obtain $x_1[n]$ 4 $x_2[n]$ using DIT FFT algorithm. (12 Marks)
 - b. Develop a DIF FFT algorithm for decomposing the DFT for N = 6. Draw the flow diagram. (08 Marks)
- 5 a. A system is specified by the relation $y[n] = \frac{1}{2}y[n-1] + \frac{1}{4}y[n-2] + x[n] + x[n-1]$. Realize the system in the following forms:
 - i) Direct form
 - ii) Cascade form and
 - iii) Parallel form.

(12 Marks)

- b. Realize the FIR filter whose transfer function is $H(Z) = 1 + \frac{3}{4}z^{-1} + \frac{17}{8}z^{-2} + \frac{3}{4}z^{-3} + z^{-4}$ in
 - i) Direct form and ii) Cascade form.

(08 Marks)

Explain bilinear transformation method of digital filter design.

(08 Marks)

- Obtain the digital filter equivalent of the analog filter shown in Fig.6(b), using
 - Impulse invariance transformation and
 - Bilinear transformation methods. ii)

Assume the sampling frequency $f_s = 2$ fo, where fo is the cutoff frequency of the analog filter shown

(12 Marks)

Design a digital filter that meets the following specifications:

$$0.8 \le |H(w)| \le 1$$

$$; \quad 0 \le w \le 0.3\pi$$

$$|H(w)| \leq 0.2$$
;

$$|H(w)| \le 0.2 \quad ; \quad 0.6\pi \le w \le \pi$$

The filter must have a monotonic pass band and stop band frequency response. Use impulse (14 Marks) invariance transformation.

Compare the characteristics of IIR and FIR digital filters.

(06 Marks)

Determine the filter coefficient h_d[n] for the desired frequency response of a low pass filter 8 given by,

Hd (ejw)
$$= e^{-j2w}$$
 for $-\frac{\pi}{4} \le w \le \frac{\pi}{4}$
 $= 0$ for $\frac{\pi}{4} \le w \le \pi$

If we define the new filter coefficients $h[n] = h_d[n] w[n]$, where

$$w[n] = 1 \text{ for } 0 \le n \le 4$$

determine h [n] and also the frequency response H (e^{jw}) and compare with H_d (e^{jw}). (12 Marks)

Describe in detail, the architecture of general DSP processor.

(08 Marks)